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ANALYTICAL SOLUTION OF BOUNDARY-VALUE PROBLEMS

FOR THE ELLIPSOIDAL STATISTICAL EQUATION

UDC 533.72A. V. Latyshev and A. A. Yushkanov

This paper describes an analytical method for solving semispatial boundary-value problems for the
ellipsoidal statistical equation with a frequency proportional to the molecular velocity. The classical
Smoluchowski problem of a temperature jump in a rarefied gas and weak vaporization (condensation)
is solved. Numerical calculations of the obtained expressions are performed. A comparison is made
with previous results.

Key words: statistical equation, Smoluchowski problem, Riemann–Hilbert boundary-value prob-
lem.

Introduction. Model kinetic equations are still widely used in the kinetic theory of gases (see, for example,
[1–3]).

The well-known kinetic Bhatnagar–Gross–Krook (BGK) equation leads to an incorrect Prandtl number.
This drawback is eliminated by using higher-order models (in analytical solutions), such as the Shakhov equation
and the ellipsoidal statistical equation (ES equation) or the full Boltzmann equation in numerical solutions.

For all model equations with a constant collision frequency ν = const, analytical methods [4–7] of solving
boundary-value problems have been developed.

Alongside kinetic equations with ν = const, equations with a collision frequency proportional to the molecular
velocity are used. Such equations correspond to the more adequate hypothesis on the constancy of the free path
length of molecules l = const. In [8], we showed that in slip problems, the ES equation for l = const gives
results close to those obtained using the full Boltzmann equation for rigid sphere molecules. In the same study, we
developed an analytical solution method for the ES equation as applied to slip problems. So far, there is no method
for the analytical solution of general boundary-value problems for the ES equation. Among such problems is the
Smoluchowski problem, which combines the problems of a temperature jump and weak vaporization (condensation).
To fill this gap, in the present paper, we develop an analytical method for solving semispatial boundary-value
problems for the ES equation with a collision frequency ν = ν0V , where V =

√
V 2

1 + V 2
2 + V 2

3 is the molecular
velocity magnitude. The exact solution of the Smoluchowski problem was obtained.

The problem of a temperature jump in a gas is among the most important problems of the interaction of a
gas with a solid (or a condensed phase). This problem has been a subject of extensive research using both numerical
and analytical methods. Because of the fundamental nature of the problem considered, the interest in analytical
methods remains high (see [3] and references therein).

The analytical results available on this problem were obtained using the BGK equation (with constant and
variable collision frequencies) and the ES equation with ν = const. It seems urgent to develop an analytical method
for the ES equation for the case l = const and to employ it to solve the Smoluchowski problem. It is important to
bear in mind that analytical methods give a complete solution of the problem since they allow one to obtain not
only magnitudes of jumps of macroparameters (temperature and concentration) but also the complete distribution
function.
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1. Formulation of the Problem and the Basic Equations. Let us consider the stationary linearized
ES equation with frequency ν = ν0V (see [4, 9]) in dimensionless variables:

C∇ϕ + Cϕ(r,C) =
√

π

2
C

∫
ρ(C ′)k(C,C ′)ϕ(r,C ′) d3C ′. (1.1)

Here C =
√

m/(2kTs)V (Ts is the surface temperature and k is the Boltzmann constant) is the dimensionless
molecular velocity and r′ = ν0r is the dimensionless coordinate (here and below, the prime at the dimensionless
coordinate is omitted).

The kernel of Eq. (1.1) is defined by the expression

k(C,C ′) = 1 +
3
2

CC ′ +
1
2

(C2 − 2)(C ′2 − 2) + γ
3∑

i,j=1

(
CiCj −

1
3

δijC
2
)(

C ′
iC

′
j −

1
3

δijC
′2

)
,

where ρ(C) = π−3/2C exp (−C2); γ is a parameter that can be found from the definition of the Prandtl number;
δij is the Kronecker delta; δii = 1; δij = 0, and i 6= j.

We note that for γ = 0, Eq. (1.1) becomes the BGK equation because the ES kernel k becomes the BGK
kernel

k0(C,C ′) = 1 +
3
2

CC ′ +
1
2

(C2 − 2)(C ′2 − 2).

We consider the class of problems in which the distribution function depends on the space variable x and
shows isotropy in the plane C1 = const, C2, C3. For these problems, all nondiagonal components of the tensor
(i 6= j) ∫

ρ(C)
(
CiCj −

1
3
δijC

2
)
ϕ(x,C) d3C

are equal to zero. In addition, under these assumptions, the function ϕ(x, C) depends only on x, C, and µ = C1/C.
Therefore, Eq. (1.1) is simplified:

µ
∂ϕ

∂x
+ ϕ(x, µ, C) =

1∫
−1

dµ′
∞∫
0

exp (−C ′2)C ′3k(µ,C;µ′, C ′)ϕ(x, µ′, C ′) dC ′, (1.2)

where

k(C,C ′) = k0(C,C ′) +
3
2

γC2C ′2
(
µ2 − 1

3

)(
µ′2 − 1

3

)
.

We use the definition of the Prandtl number: Pr = 5kη/(2mæ). Here m is the molecular weight, η is the
viscosity coefficient, and æ is the thermal conductivity. Expressing the viscosity and heat conductivity in terms of
the parameter γ, we obtain

γ =
40(9Pr − 8)

288Pr − 256 + 75π
.

For the frequently used value of the Prandtl number Pr = 2/3, this formula yields γ = −0.466148.
In the Smoluchowski problem, a gas occupies a half-space x > 0 above a flat wall from which vaporization

(condensation) of the gas (vapor) molecules occurs and there is heat transfer between the condensed phase and
the gas (vapor). We assume that away from the surface there are a temperature gradient perpendicular to the
surface (and the corresponding heat flux) and a certain mass average velocity of the gas directed from or to
the surface (vaporization or condensation), i.e., T (x) = T0 + Ktx, n(x) = n0 − (n0Kt/Ts)x, Kt = (dT/dx)∞,
U(x) = {U∞, 0, 0}, and x → +∞. The Smoluchowski problem consists of finding the relative temperature jump
εt = (T0 − Ts)/Ts as a function of the relative temperature gradient kt = Kt/Ts and the rate of vaporization
(condensation) U =

√
m/(2kTs)U∞. Taking into account the linear nature of the problem, we can write εt =

Ttkt + TuU . The nondimensional quantities Tt and Tu are called the temperature jump coefficients. Another
important characteristic of the gas is the relative jump in the concentration εn = (n0−ns)/ns (ns is the saturated-
vapor concentration at a temperature Ts) for which εn = Ntkt + NuU (Nt and Nu are the concentration jump
coefficients).
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Assuming that the reflection of the molecules from the wall is purely diffusive, we formulate the boundary
conditions in the Smoluchowski problem:

ϕ(0, µ, C) = 0, 0 < µ < 1,

ϕ(x, µ,C) = ϕas(x, µ, C) + o(1), x → +∞, −1 < µ < 0,
(1.3)

ϕ(0, µ, C) = 0, 0 < µ < 1,

ϕ(x, µ, C) = ϕas(x, µ, C) + o(1), x → +∞, −1 < µ < 0,
(1.3)

where

ϕas = εn + 2UµC +
(
C2 − 3

2

)
εt + kt

[
(x− µ)

(
C2 − 5

2

)
− 2

3
√

π
µC

]
.

Equation (1.2) has four particular solutions: three of them are collision invariants 1, µC, and C2, and the fourth
solution (x− µ)(C2 − 5/2)− 2µC/(3

√
π) describes heat transfer in the nonuniformly heated gas.

Taking into account the structure of the kernel of Eq. (1.2), we seek a solution of the problem (1.2), (1.3) in
the form

ϕ(x, µ, C) = h1(x, µ) + Ch2(x, µ) + (C2 − 2)h3(x, µ).

The resulting problem consists of the equation

µ
∂h

∂x
+ h(x, µ) =

1
2

1∫
−1

K(µ, µ′)h(x, µ) dµ′ (1.4)

and the boundary conditions

h(0, µ) = 0, 0 < µ < 1,

h(x, µ) = has(x, µ) + o(1), x → +∞, −1 < µ < 0.
(1.5)

Here h = col {h1(x, µ), h2(x, µ), h3(x, µ)} is a column vector and

has(x, µ) = col
{

εn +
1
2

εt −
1
2

kt(x− µ),
(
2U − 2

3
√

π
kt

)
µ, εt + kt(x− µ)

}
;

the kernel of the equation is

K(µ, µ′) = K0 + 3µµ′K1 + 3γ
(
µ2 − 1

3

)(
µ′2 − 1

3

)
K2,

where

K0 =

 1 4α 0
0 0 0
0 α 1

 , K1 =

 0 0 0
2α 1 α

0 0 0

 , K2 =

 2 10α 2
0 0 0
1 5α 1

 (
α =

3
16
√

π
)
.

2. Separation of Variables, Eigenvectors, and Eigenvalues. Separation of variables in Eq. (1.4) using
the general Fourier method leads to the solutions hη(x, µ) = exp (−x/η)Φ(η, µ), in which η is a spectral parameter,
or the separation parameter, and the vector Φ is a solution of the characteristic equation

(η − µ)Φ(η, µ) =
1
2

ηD(µ, η)n(η), n(η) = col {n1(η), n2(η), n3(η)} =

1∫
−1

Φ(η, µ) dµ.

Here

D(µ, η) = D0(µη)− γ(µ2 − 1/3)D1(η), d(η) = 1 + 3cη2;

D0 =

 1 4α 0
0 3cµη 0
0 α 1

 ; D1(η) =

 2 10αd(η) 2
0 0 0
1 5αd(η) 1

 ; c = 1− 9α2.
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For η ∈ (−1, 1), the solution of the characteristic equation is taken in the space of generalized functions [10]:

Φ(η, µ) = F (η, µ)n(η).

Here

F (η, µ) =
1
2

D(µ, η)P
1

η − µ
+ Λ(η)δ(η − µ)

is the natural matrix function, the symbol Px−1 denotes the distribution (the principal value of the integral of
x−1), δ(x) is the delta-function, Λ(z) = Λ0(z)− γω∗(z)D1(z) is the dispersion matrix, where

ω∗(z) = 1/3 + (z2 − 1/3)λ0(z),

Λ0(z) =

 λ0(z) 4αT (z) 0
0 ω(z) 0
0 αT (z) 0

 ,

λ0(z) = 1 + T (z) is the dispersion Case function [11], T (z) =
1
2

z

1∫
−1

du

u− z
, and ω(z) = 1 + 3cz2λ0(z).

Below, we shall need the representation of the dispersion matrix in the form

Λ(z) = λ0(z)D(z)−M(z)/3,

where

M(z) =

 2γ 2α(6 + 5γd(z)) 2γ

0 −3 0
γ α(3 + 5γd(z)) γ

 .

The dispersion function of this problem has the form

λ(z) = det Λ(z) = γλ0(z)ω(z)ω1(z),

where ω1(z) = γ−1λ0(z)− 3ω∗(z) = λ0(z)s(z)− 1 and s(z) = −3z2 + 1 + γ−1.
By the definition (see, for example, [4, 12]) the discrete spectrum of the problem consists of the set of zeroes

of the dispersion function. The zero of λ0(z) is (see [11]) the point z = ∞ of multiplicity 2, and the zeroes of ω(z)
are (see [4, 9]) the two points ±η0 (η0 = 1 + 1.12 · 10−48). From the expansion

γω1(z) =
4γ − 5
15z2

+
8γ − 7
35z4

+ · · · (z →∞)

it is obvious that ω1(z) has a zero of multiplicity 2 at the point z = ∞. The use of the argument principle [13]
shows that ω1(z) does not have other zeroes. The zero of η0 corresponds to the eigensolution

h0(x, µ) = exp
(
− x

η

)1
2

η0D(µ, η0)
1

η0 − µ
n(η0).

Substituting this solution into Eq. (1.4), we find that the vector n(η0) is determined from the equation

Λ(η0)n(η0) = 0. (2.1)

By virtue of the equalities

ω(η0) = 1 + 3cη2
0λ0(η0) = 0, d(η0)λ0(η0) = T (η0),

λ0(η0)− 3γω∗(η0) = γω1(η0),

the matrix Λ(z) at the point η0 can be written as

Λ(η0) = γ

 ω1(η0) + ω∗(η0) 4αd(η0)[ω1(η0) + ω∗(η0)/2] −2ω∗(η0)
0 0 0

−ω∗(η0) αd(η0)[ω1(η0)− 2ω∗(η0)] ω1(η0) + 2ω∗(η0)

 .
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Setting n2(η0) = λ0(η0), from Eq. (2.1), we obtain two equations

[ω1(η0) + ω∗(η0)]n1(η0)− 2ω∗(η0)n3(η0) = −4αT (η0)[ω1(η0) + ω∗(η0)/2],

−ω∗(η0)n1(η0) + [ω1(η0) + 2ω∗(η0)]n3(η0) = −αT (η0)[ω1(η0)− 2ω∗(η0)].

From these equations it follows that n1(η0) = −4αT (η0) and n3(η0) = −αT (η0). Thus, the vector n(η0) is
constructed:

n(η0) = col {−4αT (η0), λ0(η0),−αT (η0)}.

We note that D1(η0)n(η0) = 0, and, hence,

D(µ, η0)n(η0) = [D0(µη0)− γ(µ2 − 1/3)D1(η0)]n(η0) = D0(µη0)n(η0) = col {4α,−µ/η0, α}.

Thus, the last particular solution is constructed:

h0(x, µ) =
1
2

exp (−x/η0)
η0 − z

col {4αη0,−µ, αη0}.

We note that a linear combination of the four particular solutions of Eq. (1.4) corresponding to the point
z = ∞ constitutes a vector has(x, µ).

3. Homogeneous Boundary-Value Problem. Below, we shall need the solution of the Riemann–Hilbert
vector homogeneous boundary-value problem

X+(µ) = G(µ)X−(µ), G(µ) = [Λ+(µ)]−1Λ−(µ), 0 < µ < 1. (3.1)

The matrix factor G(µ) can be written as

G(µ) = [P+(µ)]−1P−(µ),

where P (z) = Λ(z)D−1(z, z); X(z) is an unknown matrix and X±(µ) are boundary values from above/below in the
interval (0, 1).

It is clear that P (z) = λ0(z)E −M(z)D−1(z, z)/3 (E is a unit matrix) or P (z) = λ0(z)E − E1(z)/(3s(z)),
where

E1(z) =

 2 e1(z) 2
0 e2(z) 0
1 e3(z) 1

 ,

e1(z) = 2α(5− 2e2(z)),
e2(z) = −s(z)/(cz2),
e3(z) = α(5− e2(z)).

The matrix P (z) is analytic in the complex plane except at the points of the cut [0, 1] and at the simple
imaginary poles ±iη1 [η1 =

√
−1/(3γ)− 1/3], which are zeroes of s(z). When γ → 0 (the ES equation becomes the

BGK equation), the poles ±iη1 vanish moving to infinity along the imaginary axis.
To reduce the matrix P (z) to diagonal form, it suffices to reduce the matrix E1(z) to diagonal form. Con-

sidering the eigenvalue problem for the matrix E1(z), we construct the diagonalizing matrix S:

S =

 1 −4α 2
0 1 0
−1 −α 1

 , S−1 =
1
3

 1 2α −2
0 3 0
1 5α 1

 .

From the definition of the matrix S, it follows that S−1E1(z)S = diag {0, e2(z), 3}. We shall seek a solution of
problem (3.1) in the form X(z) = SX0(z)S−1, where X0(z) = diag {U(z), V (z),W (z)} is an unknown matrix.
Taking into account the diagonalization, we obtain the matrix boundary-value problem

Ω+(µ)X+
0 (µ) = Ω−(µ)X−

0 (µ), 0 < µ < 1, (3.2)

where Ω(z) = S−1P (z)S = diag {λ0(z), ω(z)/(3cz2), ω1(z)/s(z)}.
The matrix boundary-value problem (3.2) is now equivalent to the following three scalar boundary-value

problems:

U+(µ) = [λ−0 (µ)/λ+
0 (µ)]U−(µ), 0 < µ < 1,

V +(µ) = [ω−(µ)/ω+(µ)]V −(µ), 0 < µ < 1,

W+(µ) = [ω−1 (µ)/ω+
1 (µ)]W−(µ), 0 < µ < 1.

626



The first two problems were already solved in [9], and the third problem is solved similarly to the first. We give the
solutions of all problems:

U(z) = z exp (−u(z)), V (z) = z exp (−v(z)), W (z) = z exp (−w(z)),

u(z) =
1
π

1∫
0

ζ0(u) du

u− z
, v(z) =

1
π

1∫
0

ζ(u) du

u− z
, w(z) =

1
π

1∫
0

ζ1(u) du

u− z
.

Here

ζ0(u) = −π

2
− arctan

[2λ0(u)
πu

]
, ζ(u) = −π

2
− arctan

[2ω(u)
3cπu3

]
,

ζ1(u) = −π

2
− arctan

[ 2
πu

(
λ0(u)− 1

s(u)

)]
.

Thus, the matrix X(z) is constructed and is defined in explicit form by the equality

X(z) =

 U + 2W 2α(U − 6V + 5W ) −2U + 2W

0 2V 0
−U + W α(−2U − 3V + 5W ) 2U + W

 .

We note that X(z) = zE + X(0) + o(1) as z →∞, where

X(0) = −1
3

 U1 + 2W1 2α(U1 − 6V1 + W1) 2(−U1 + W1)
0 V1 0

−U1 + W1 α(−2U1 − 3V1 + 5W1) 2U1 + W1

 .

Here

U1 = − 1
π

1∫
0

ζ0(u) du = 0.710446, V1 = − 1
π

1∫
0

ζ(u) du = 0.997747, W1 = − 1
π

1∫
0

ζ1(u) du.

We recall that W1 depends on the parameter γ, i.e., the Prandtl number. For a Prandtl number Pr = 2/3, we have
W1 = 0.812276. As γ → 0, we have W1 → U1, because ζ1(u) → ζ0(u).

4. Expansion in Eigenvectors. We seek a solution of problem (1.4), (1.5) as an expansion in the
eigenvectors of the characteristic equation

h(x, µ) = has(x, µ) + A0h0(x, µ) +

1∫
0

exp
(
− x

η

)
F (η, µ)A(η) dη. (4.1)

Here A0 is an unknown constant and A(η) is an unknown vector function with elements Aj(η) (j = 1, 2, 3); the
quantities εt and εn appearing in has(x, µ) are also unknowns.

Using boundary conditions (1.5), we reduce expansion (4.1) to the following vector singular integral equation
with the Cauchy kernel:

has(0, µ) + A0h0(0, µ) +
1
2

1∫
0

ηD(µ, η)
η − µ

A(η) dη + Λ(η)A(η) = 0, 0 < µ < 1.

Let us introduce the auxiliary vector function

N(z) =
1
2

1∫
0

ηD(z, η)A(η)
dη

η − z
(4.2)

and reduce the singular equation to the inhomogeneous vector boundary-value problem

P+(µ)[N+(µ) + has(0, µ) + A0h0(0, µ)] = P−(µ)[N−(µ) + has(0, µ) + A0h0(0, µ)], 0 < µ < 1.
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By means of the corresponding homogeneous problem (3.1), the inhomogeneous problem is reduced to the problem
of determining the analytical vector function on from its zero jump on the cut:

[X+(µ)]−1[N+(µ) + has(0, µ) + A0h0(0, µ)]

= [X−(µ)]−1[N−(µ) + has(0, µ) + A0h0(0, µ)], 0 < µ < 1. (4.3)

Taking into account the features of the matrices and vectors included in Eq. (4.3), we shall obtain its general solution

N(z) = −has(0, z)−A0h0(0, z) + X(z)[C + (z − η0)−1B], (4.4)

where C and B are unknown vectors with constant elements cj and bj (j = 1, 2, 3).
The pole for solution (4.4) at the point η0 is eliminated by the condition

X(η0)B + (1/2)A0η0 col {4α,−1, α} = 0,

whence

B = −1
2

A0η0X
−1(η0) col {4α,−1, α} = − A0η0

2V (η0)
col {4α,−1, α}.

The auxiliary vector function (4.2) and the general solution (4.4) have a pole at the point z = ∞. We isolate the
main parts of the expansions of these functions in a neighborhood of the point z = ∞. Equation (4.2) is written as

N(z) =
1
2

1∫
0

ηD0(ηz)
η − z

A(η) dη − 1
2

γ
(
z2 − 1

3

) 1∫
0

ηD1(η)
η − z

A(η) dη.

It is easy to verify that D1(η)A(η) = a(η) col {2, 0, 1}, where a(η) = a1(η) + 5αd(η)a2(η) + a3(η). Therefore,
function (4.2) has the expansion

N(z) = zN (1) + N (0) + o(1), z →∞. (4.5)

Here

N (1) = J (1) col {2, 0, 2}, N (0) = J (2) col {0, 1, 0} − J
(2)
2 col {0, 1, 0},

where

J (j) =
1
2

γ

1∫
0

ηja(η) dη (j = 1, 2); J
(2)
2 =

3c

2

1∫
0

η2a2(η) dη.

We now expand the right side of (4.4):

N(z) = −has(0, z)−A0h0(0, z) + zC + B + X(0)C + o(1), z →∞. (4.6)

Comparing expansions (4.5) and (4.6), we obtain the following two systems of equations:

c1 = 2c3 +
5
2

kt, c2 = 2U − 2
3
√

π
kt, c3 = J (1) − kt (4.7)

and

2J (2) = −εn −
1
2

εt + b1 −
1
3

U1(c1 + 2αc2 − 2c3) + 4αc2V1 −
2
3

W1(c1 + 5αc2 + c3),

−J
(2)
2 = −1

2
A0 + b2 − c2V1, J (2) = −εt + b3 +

1
3

U1(c1 + 2αc2 − 2c3) + αc2V1 −
1
3

W1(c1 + 5αc2 + c3).
(4.8)

From systems (4.7) and (4.8), we find all unknown coefficients of solution (4.4) and expansion (4.1). The
unknown vector function A(η) is found from Sokhotsky’s formula applied to the vector function (4.2) into which
solution (4.4) is substituted:

iπηD(η, η)A(η) = [X+(η)−X−(η)][C + (η − η0)−1B]. (4.9)

Thus, all unknowns from expansion (4.1) are found.
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5. Temperature and Concentration Jumps. Let us find all parameters of solution (4.4) and expansion
(4.1) in explicit form. Because

c1 + c3 = 3J (1) − kt/2, c1 − 2c3 = 5kt/2,

b1 + 5αb2 + b3 = 0, b1 + 2αb2 − 2b3 = 0,

equality (4.9) is representable as three scalar expansions:

iπη[a1(η) + 4αa2(η)− 2p(η)a(η)] =
(5

6
kt +

2
3

αc2

)
[U+(η)− U−(η)]

+ 2
(
J (1) − 1

6
kt +

5
3

αc2

)
[W+(η)−W−(η)]− 4α

(
c2 +

b2

η − η0

)
; (5.1)

3iπηcη3a2(η) =
(
c2 +

b2

η − η0

)
[V +(η)− V −(η)], p(η) = γ

(
η2 − 1

3

)
; (5.2)

iπη[αa2(η) + a3(η)− p(η)a(η)] = −
(5

6
kt +

2
3

αc2

)
[U+(η)− U−(η)]

+
(
J (1) − 1

6
kt +

5
3

αc2

)
[W+(η)−W−(η)]− α

(
c2 +

b2

η − η0

)
[V +(η)− V −(η)]. (5.3)

According to (5.2), we obtain

J
(2)
2 =

1
2πi

1∫
0

[V +(η)− V −(η)]
(
c2 +

b2

η − η0

)dη

η
.

To calculate this integral, we form the function

F (z) = [V (z)− z + V1]
(c2

z
+

b2

z(z − η0)

)
.

Let us consider a triply connected domain Dε (Fig. 1) bounded by a complex contour consisting of a circumference γR

of fairly large radius R = 1/ε (ε > 0), a circumference γ0 of radius ε with center at the point η0, and a clockwise
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contour γε which separates from the cut [0, 1] by a distance ε and becomes a circumference of radius 2ε with center
at the coordinate origin. According to the Cauchy theorem for multiconnected domains, we have

1
2πi

∫
γR

F (z) dz =
1

2πi

∫
γ0

F (z) dz − 1
2πi

∫
γε

F (z) dz.

In this equality, we pass to the limit as ε → 0. By virtue of the asymptotic relation V (z) = z−V1 +o(1) for z →∞,
the integral over the circumference γR vanishes. As a result, we arrive at the equality

1
2πi

1∫
0

[F+(η)− F−(η)] dη =
1

2πi

1∫
0

[V +(η)− V −(η)]
(c2

η
+

b2

η(η − η0)

)
dη ≡ J

(2)
2 = Res

η0
F (z) + Res

0
F (z).

Evaluation of these residues yields

J
(2)
2 = V (0)(c2 − b2/η0) + V1c2 + V (η0)b2/η0 − b2.

Comparing this equality with the second in (4.8), we have b2 = η0c2 and A0 = 2V (η0)c2. Hence, the vector
B is finally constructed:

B = −η0c2 col {4α,−1, α}.

Combining Eq. (5.1) with Eq. (5.3) and with Eq. (5.2) multiplied by 5α, we have

iπηγs(η)a(η) = (3J (1) − kt/2 + 5αc2)[W+(η)−W−(η)].

Consequently,

J (j) =
(
3J (1) − 1

2
kt + 5αc2

)
Jj , Jj =

1
2πi

1∫
0

[W+(u)−W−(u)]
uj−1 du

s(u)
, j = 1, 2. (5.4)

To calculate the integrals Jj , we form the functions

Fj(z) =
W (z)− z + W1

s(z)
zj−1 (j = 1, 2),

which are analytic in a four-connected domain Dε (Fig. 2) bounded by a complex contour. This contour consists of
a circumference γR of fairly large radius R = 1/ε (ε > 0), two circumferences γ1: |z− iη1| = ε and γ−1: |z+ iη1| = ε,
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and a contour γε that encloses the cut [0, 1] clockwise and is separated from it by a distance ε. According to the
Cauchy theorem for multiconnected domains,

1
2πi

∫
γR

Fj(z) dz = Res
iη1

Fj(z) + Res
−iη1

Fj(z)− 1
2πi

∫
γε

Fj(z) dz.

In this equality, we pass to the limit as ε → 0. By virtue of the asymptotic form Fj(z) = o(zj−3) (j = 1, 2), we
find that the integral on the left side of the previous equality vanishes. We have

1
2πi

1∫
0

[F+
j (η)− F−

j (η)] dη ≡ Jj = Res
iη1

Fj(z) + Res
−iη1

Fj(z).

Consequently,

J1 = Res
iη1

W (z)− z + W1

s(z)
+ Res
−iη1

W (z)− z + W1

s(z)
= − 1

6iη1
[W (iη1)−W (−iη1)− 2iη1],

J2 = Res
iη1

W (z)− z + W1

s(z)
z + Res

−iη1

W (z)− z + W1

s(z)
z = −1

6
[W (iη1) + W (−iη1) + 2W1].

Now from Eqs. (5.4), we obtain

J (1) =
J1

1− 3J1

(
5αc2 −

kt

2

)
, J (2) =

J2

1− 3J1

(
5αc2 −

kt

2

)
.

Thus, we found all parameters of solution (4.4). From the first and third equations (4.8), we derive the formulas

εt = αc2

[
V1 − η0 +

2
3

U1 −
5
3

W1 − 5
J2 + J1W1

1− 3J1

]
+ kt

[5
6

U1 +
W1 + 3J2

6(1− 3J1)

]
,

εn = 3εt/2 + 2αc2(V1 − η0 − U1)− 5ktU1/2.

(5.5)

The boundary-value problem (1.4), (1.5) is completely solved.
6. Numerical Calculations and Discussion of Results. Formulas (5.5) can be written in standard form

εt = Ttkt + Tu(2U) and εn = Ntkt + Nu(2U). The temperature and concentration jump coefficients are evaluated
from the formulas

Tt = (3η0 − 3V1 + 18U1 + 10W1 −W ′
1)/24,

Tu = α[−3η0 + 3V1 + 2U1 − 10W1 + 5W ′
1]/3,

Nt = [7η0 − 7V1 − 18U1 + 10W1 −W ′
1]/16,

Nu = α[−7η0 + 7V1 − 2U1 − 10W1 + W ′
1]/2.

(6.1)

Here

W ′
1 = −iη1

W (iη1) + W (−iη1)
W (iη1)−W (−iη1)

and W ′
1 → W1 as γ → 0. We note that when γ → 0 (the ES equation becomes the BGK equation), formula (5.5)

becomes the corresponding formulas derived from the BGK equation:

εt = kt(η0 − V1 + 9U1)/8 + (2U)α(−η0 + V1 − U1),

εn = kt(7η0 − 7V1 − 9U1)/16 + (2U)7α(−η0 + V1 − U1)/2.

We note that the Prandtl number differs somewhat from the value of 2/3. For rigid sphere molecules,
Pr = 0.66072 [14] and, hence, γ0 = −0.483427. Numerical calculations using the above formulas for the value of γ0

corresponding to the given Prandtl number lead to the following results:

Tt(γ0) = 0.826285, Tu(γ0) = −1.09308,

Nt(γ0) = −0.35851, Nu(γ0) = −0.93760.
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In [9], for a BGK model with a collision frequency proportional to the molecular velocity (i.e., with a constant free
path length of molecules), the following results were obtained: Tt = 0.79954, Tu = −1.0239, Nt = −0.39863, and
Nu = −0.82905.

Let us convert to dimensional quantities. We note that in temperature jump problems, it is customary to
use the definition of the free path length for molecules in terms of thermal conductivity (thermal diffusivity) [15].
We use the definition of the free path length that coincides with the corresponding definition according to [4] for
Pr = 2/3:

l =
2χ

3

√
2kT

πm
,

where χ is the thermal diffusivity.
Then, the expression for the temperature jump is written as

ε=Ctl
(dT

dx

)
∞

.

In this case, the temperature jump coefficient obtained in the present study has a value Ct = 2.06571. We recall
that the ES equation with a constant collision frequency [7] yields Ct = 2.20576.

For comparison, numerical calculations using the complete Boltzmann equation for rigid sphere molecules
[15] yielded Ct = 2.1113, and in [16], Ct = 2.20711 was obtained for a 13-moment kinetic model with a constant
frequency of molecular collisions. A numerical study [3] of the model of rigid sphere molecules with a variable
collision frequency using the discrete coordinate method yielded the value Ct = 2.0421. We note that the results
given in the cited papers are converted taking into account the definition of the free path length of gas molecules
adopted in the present paper.

Conclusions. We shall dwell on the distinctive features of the analytical solution described above. De-
composition of the distribution function reduces the Smoluchowski problem to a typical vector transfer equation
with a 3 × 3 matrix kernel. There are no exact solutions of equations with such kernels. An exception is a study
[9], in which the same problem for the BGK equation was considered. One of the central points that ensure an
analytical solution is diagonalization of the Riemann–Hilbert matrix vector boundary-value problem, to which the
initial boundary-value reduces. The matrix coefficient of the Riemann–Hilbert problem has singularities — simple
poles on the imaginary axis. When the ES equation becomes the BGK equation (γ → 0), these poles disappear —
move to infinity on the imaginary axis. For the first time, for analytical methods under resolvability conditions for
the general solution of the Riemann–Hilbert problem, the values of the factor matrix were used not only at points
of the discrete spectrum but also at the above-mentioned poles.

The results obtained in the present paper can be useful to analyze the behavior of aerosol particles in
nonuniformly heated gases and to solve various problems of the kinetic theory of gas and plasma, the theory of
neutron and electron transport, theoretical astrophysics, and other areas.

We thank A. V. Bobylev, who, over ten years ago, advised us not to confine ourselves to the developed
analytical method for the BGK equation and drew our attention to the importance of developing analytical methods
for the higher-order kinetic equations.

This work was supported by the Russian Foundation for Basic Research (Grant No. 03-01-00281).
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